Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Mol Ther ; 31(2): 344-361, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2159943

ABSTRACT

Increasing evidence shows that SARS-CoV-2 can infect kidneys and cause acute kidney injury (AKI) in critically ill COVID-19 patients. However, mechanisms through which COVID-19 induces AKI are largely unknown, and treatment remains ineffective. Here, we report that kidney-specific overexpressing SARS-CoV-2 N gene can cause AKI, including tubular necrosis and elevated levels of serum creatinine and BUN in 8-week-old diabetic db/db mice, which become worse in those with older age (16 weeks) and underlying diabetic kidney disease (DKD). Treatment with quercetin, a purified product from traditional Chinese medicine (TCM) that shows effective treatment of COVID-19 patients, can significantly inhibit SARS-CoV-2 N protein-induced AKI in diabetic mice with or without underlying DKD. Mechanistically, quercetin can block the binding of SARS-CoV-2 N protein to Smad3, thereby inhibiting Smad3 signaling and Smad3-mediated cell death via the p16-dependent G1 cell-cycle arrest mechanism in vivo and in vitro. In conclusion, SARS-CoV-2 N protein is pathogenic and can cause severe AKI in diabetic mice, particularly in those with older age and pre-existing DKD, via the Smad3-dependent G1 cell-cycle arrest mechanism. Importantly, we identify that quercetin may be an effective TCM compound capable of inhibiting COVID-19 AKI by blocking SARS-CoV-2 N-Smad3-mediated cell death pathway.


Subject(s)
Acute Kidney Injury , COVID-19 , Diabetes Mellitus, Experimental , Mice , Animals , SARS-CoV-2 , COVID-19/complications , Quercetin/pharmacology , Diabetes Mellitus, Experimental/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Mice, Inbred Strains , Cell Cycle Checkpoints
3.
Int J Biol Sci ; 17(6): 1497-1506, 2021.
Article in English | MEDLINE | ID: covidwho-1206425

ABSTRACT

Increasing clinical evidence shows that acute kidney injury (AKI) is a common and severe complication in critically ill COVID-19 patients. The older age, the severity of COVID-19 infection, the ethnicity, and the history of smoking, diabetes, hypertension, and cardiovascular disease are the risk factor for AKI in COVID-19 patients. Of them, inflammation may be a key player in the pathogenesis of AKI in patients with COVID-19. It is highly possible that SARS-COV-2 infection may trigger the activation of multiple inflammatory pathways including angiotensin II, cytokine storm such as interleukin-6 (IL-6), C-reactive protein (CRP), TGF-ß signaling, complement activation, and lung-kidney crosstalk to cause AKI. Thus, treatments by targeting these inflammatory molecules and pathways with a monoclonal antibody against IL-6 (Tocilizumab), C3 inhibitor AMY-101, anti-C5 antibody, anti-TGF-ß OT-101, and the use of CRRT in critically ill patients may represent as novel and specific therapies for AKI in COVID-19 patients.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , Inflammation/etiology , SARS-CoV-2/isolation & purification , Stress, Physiological , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , COVID-19/virology , Complement Activation , Cytokine Release Syndrome , Diabetes Complications/metabolism , Humans , Renal Replacement Therapy
SELECTION OF CITATIONS
SEARCH DETAIL